## Exercise 37

A ladder 10 ft long rests against a vertical wall. Let $\theta$ be the angle between the top of the ladder and the wall and let $x$ be the distance from the bottom of the ladder to the wall. If the bottom of the ladder slides away from the wall, how fast does $x$ change with respect to $\theta$ when $\theta=\pi / 3$ ?

## Solution

The aim of this problem is to determine how fast $x$ changes with respect to $\theta$ when $\theta=\pi / 3$, that is,

$$
\left.\frac{d x}{d \theta}\right|_{\theta=\pi / 3} .
$$

What we need is a formula for $x$ in terms of $\theta$. Start by drawing a picture of the ladder against the wall.


$$
\sin \theta=\frac{x}{10}
$$

Solve for $x$.

$$
x=10 \sin \theta
$$

Take the derivative with respect to $\theta$.

$$
\frac{d x}{d \theta}=\frac{d}{d \theta}(10 \sin \theta)=10 \cos \theta
$$

Evaluate it at $\theta=\pi / 3$.

$$
\left.\frac{d x}{d \theta}\right|_{\theta=\pi / 3}=10 \cos \frac{\pi}{3}=5 \frac{\mathrm{ft}}{\mathrm{rad}}
$$

